Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 7: e7311, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31341747

RESUMEN

Habitat fragmentation is one of the greatest threats to biodiversity conservation and ecosystem productivity mediated by direct human impact. Its consequences include genetic depauperation, comprising phenomena such as inbreeding depression or reduction in genetic diversity. While the capacity of wild and domestic herbivores to sustain long-distance seed dispersal has been proven, the impact of herbivore corridors in plant population genetics remains to be observed. We conducted this study in the Conquense Drove Road in Spain, where sustained use by livestock over centuries has involved transhumant herds passing twice a year en route to winter and summer pastures. We compared genetic diversity and inbreeding coefficients of Plantago lagopus populations along the drove road with populations in the surrounding agricultural matrix, at varying distances from human settlements. We observed significant differences in coefficients of inbreeding between the drove road and the agricultural matrix, as well as significant trends indicative of higher genetic diversity and population nestedness around human settlements. Trends for higher genetic diversity along drove roads may be present, although they were only marginally significant due to the available sample size. Our results illustrate a functional landscape with human settlements as dispersal hotspots, while the findings along the drove road confirm its role as a pollinator reservoir observed in other studies. Drove roads may possibly also function as linear structures that facilitate long-distance dispersal across the agricultural matrix, while local P. lagopus populations depend rather on short-distance seed dispersal. These results highlight the role of herbivore corridors for conserving the migration capacity of plants, and contribute towards understanding the role of seed dispersal and the spread of invasive species related to human activities.

2.
Oecologia ; 189(3): 781-793, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30799515

RESUMEN

Elevational gradients are a powerful tool to investigate how abiotic factors affect ecosystems and to predict the possible consequences of climate change. Here, we investigated the assemblage-level responses of seed size, ant worker size, and rates of seed removal by ants along a 1700 m elevational gradient in Mediterranean grasslands of central Spain, taking into account abiotic factors and interactions between biotic variables. Our results showed that both seed size and ant size decreased with elevation. Structural equation models linking abiotic factors and biotic variables were built to describe these patterns. Two equally plausible models were selected, both based on temperature. In the first model, temperature directly affected seed size and granivorous ant size, and indirectly affected ant size (of both granivorous and non-granivorous species) through a bottom-up pathway. The second model included the direct effects of temperature on ant size and granivorous ant size, and indirect effects on seed size through a top-down pathway. In this model, the link between granivorous ant size and seed size was positive. Seed removal rates decreased with elevation and seed size, with smaller seeds being preferred with increasing elevation. Taken together, our results indicate that the observed patterns of ant size and seed size are ultimately controlled by abiotic factors, although the system is more satisfactorily explained if seed-ant interactions are incorporated into the models. We expect that climate change will have strong effects on this system, including mismatches between consumers and producers potentially altering the interspecific relationships among ants and plants.


Asunto(s)
Hormigas , Animales , Cambio Climático , Ecosistema , Pradera , Semillas , España
3.
PLoS One ; 13(12): e0204787, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30566476

RESUMEN

BACKGROUND: The study of biodiversity spatial patterns along ecological gradients can serve to elucidate factors shaping biological community structure and predict ecosystem responses to global change. Ant assemblages are particularly interesting as study cases, because ant species play a key role in many ecosystem processes and have frequently been identified as useful bioindicators. METHODS: Here we analyzed the response of ant species richness and assemblage composition across elevational gradients in Mediterranean grasslands and subsequently tested whether these responses were stable spatially and temporally. We sampled ant assemblages in two years (2014, 2015) in two mountain ranges (Guadarrama, Serrota) in Central Spain, along an elevational gradient ranging from 685 to 2390 m a.s.l. RESULTS: Jackknife estimates of ant species richness ranged from three to 18.5 species and exhibited a hump-shaped relationship with elevation that peaked at mid-range values (1100-1400 m). This pattern was transferable temporally and spatially. Elevation was related to ant assemblage composition and facilitated separation of higher elevation assemblages (> 1700 m) from the remaining lower elevation species groups. Ant assemblages were nested; therefore species assemblages with a decreased number of species were a subset of the richer assemblages, although species turnover was more important than pure nestedness in all surveys. The degree of nestedness changed non-linearly as a cubic polynomial with elevation. These assembly patterns coincided more clearly over time than between the two study regions. DISCUSSION: We suggest double environmental stressors typical of Mediterranean mountains explained species richness patterns: drought at low elevations and cold temperatures at high elevations likely constrained richness at both extremes of elevational gradients. The fact that species turnover showed a dominant role over pure nestedness suggested current ant assemblages were context-dependent and highly vulnerable to global change, which threatens the conservation of present day native ant communities, particularly at high elevations.


Asunto(s)
Altitud , Hormigas/fisiología , Biodiversidad , Pradera , Animales , Hormigas/clasificación , España
4.
Oecologia ; 181(4): 959-70, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26658737

RESUMEN

Land-use change is the major driver of biodiversity loss. However, taxonomic diversity (TD) and functional diversity (FD) might respond differently to land-use change, and this response might also vary depending on the biotic group being analysed. In this study, we compare the TD and FD of four biotic groups (ants, birds, herbaceous, woody vegetation) among four land-use types that represent a gradient of land-use intensity in a Mediterranean landscape (Mediterranean shrublands, dehesas, mixed-pine forests, olive groves). Analyses were performed separately at two different spatial scales: the sampling unit scale and the site scale. Land-use intensity effects on TD and FD were quite different and highly varied among the four biotic groups, with no single clear pattern emerging that could be considered general for all organisms. Additive partitioning of species diversity revealed clear contrasting patterns between TD and FD in the percentage of variability observed at each spatial scale. While most variability in TD was found at the larger scales, irregardless of organism group and land-use type, most variability in FD was found at the smallest scale, indicating that species turnover among communities is much greater than functional trait turnover. Finally, we found that TD and FD did not vary consistently, but rather followed different trajectories that largely depended on the biotic group and the intensity of land-use transformation. Our results highlight that the relationship of land use with TD and FD is highly complex and context-dependent.


Asunto(s)
Biodiversidad , Bosques , Animales , Aves , Pinus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...